In mathematics and computer science , **computational number theory** , also known as **algorithmic number theory** , is the study of algorithms for performing numerical computations .

## See also

- Computational complexity of mathematical operations
- SageMath
- Number Theory Library
- PARI / GP
- Fast Library for Number Theory

## Further reading

- Eric Bach and Jeffrey Shallit ,
*Algorithmic Number Theory*, Volume 1:*Efficient Algorithms*. MIT Press, 1996, ISBN 0-262-02405-5 - DM Bressoud (1989).
*Factoring and Primality Testing*. Springer-Verlag. ISBN 0-387-97040-1 .

- Buhler, JP; P., Stevenhagen, eds. (2008).
*Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography*. MSRI Publications.**44**. Cambridge University Press . ISBN 978-0-521-20833-8. Zbl 1154.11002. - Henri Cohen ,
*A Course in Computational Algebraic Number Theory*, Graduate Texts in Mathematics 138, Springer-Verlag, 1993. - Richard Crandall and Carl Pomerance ,
*Prime Numbers: Computational Perspective*, Springer-Verlag, 2001, ISBN 0-387-94777-9 - Riesel, Hans (1994).
*Prime Numbers and Computer Methods for Factorization*. Progress in Mathematics.**126**(second ed.). Boston, MA: Birkhäuser. ISBN 0-8176-3743-5 . Zbl 0821.11001 . - Victor Shoup ,
*A Computational Introduction to Theory and Algebra*. Cambridge, 2005, ISBN 0-521-85154-8

- Samuel S. Wagstaff, Jr. (2013).
*The Joy of Factoring*. Providence, RI: American Mathematical Society. ISBN 978-1-4704-1048-3 .