Computational number theory

In mathematics and computer science , computational number theory , also known as algorithmic number theory , is the study of algorithms for performing numerical computations .

See also

  • Computational complexity of mathematical operations
  • SageMath
  • Number Theory Library
  • PARI / GP
  • Fast Library for Number Theory

Further reading

  • Eric Bach and Jeffrey Shallit , Algorithmic Number Theory , Volume 1: Efficient Algorithms . MIT Press, 1996, ISBN  0-262-02405-5
  • DM Bressoud (1989). Factoring and Primality Testing . Springer-Verlag. ISBN  0-387-97040-1 .
  • Buhler, JP; P., Stevenhagen, eds. (2008). Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography . MSRI Publications. 44 . Cambridge University Press . ISBN 978-0-521-20833-8. Zbl 1154.11002.
  • Henri Cohen , A Course in Computational Algebraic Number Theory , Graduate Texts in Mathematics 138, Springer-Verlag, 1993.
  • Richard Crandall and Carl Pomerance , Prime Numbers: Computational Perspective , Springer-Verlag, 2001, ISBN  0-387-94777-9
  • Riesel, Hans (1994). Prime Numbers and Computer Methods for Factorization . Progress in Mathematics. 126 (second ed.). Boston, MA: Birkhäuser. ISBN  0-8176-3743-5 . Zbl  0821.11001 .
  • Victor Shoup , A Computational Introduction to Theory and Algebra . Cambridge, 2005, ISBN  0-521-85154-8
  • Samuel S. Wagstaff, Jr. (2013). The Joy of Factoring . Providence, RI: American Mathematical Society. ISBN  978-1-4704-1048-3 .